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6ur study considere4 effective-plan -wave propagation, both
longitudinal and shear, through a medium containing a random distribution of
spherical inclusions. We assumed that t e particles and matrix are
separated by a thin layer \of elastic sate ial with different properties.
For some systems, we pre&i measurable ects for the thin layers.
Especially, we considered /epoxy and ij'.

1. Introduction

Wave propagation through a particle-reinforced composite medium has

been studied by many authors [1-13]. Except 15], all these studies assume

that the inclusions bond perfectly with the surrounding matrix material. In

[5], for long wavelengths, the authors consider the effect of a thin viscous

third layer. Recently, Sayers (11] examined the effect of this layer when

the particles and the matrix possess the same properties.

In the present study, we analyze the problem of wave propagation in a

composite medium with a random distribution of spherical inclusions. The

inclusions are separated from the matrix by thin layers of elastic material.

The properties of the layers vary through the thickness such that there is a

continuous transition from the inclusions to the matrix.

rhe object of this study was to explore the practicality of using

ultrasound to characterize properties of interface layers. Ultrasound is a

practical tool for measuring properties of, and characterizing the state of, r

ts. -. 
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a material with microstructure (or changes in microstructure). References

to such studies occur in i

2. Scattering by a spherical inclusion with an interface layer

Consider a spherical inclusion of radius a and elastic properties A,,

pl, P, embedded in an elastic matrix of material properties A2 , A2, P2.

Also, let the inclusion be separated from the matrix by a thin layer of

uniform thickness h(<<a) with variable material properties A(r), p(r), and

p(r). Here, A, p denote Lam& constants and p density. Let A(r), p(r) be

expressed as

A(r) + 2p(r) - (A, + 2p,)f(r), a < r < a + h, (1)

p(r) - p,g(r), a < r < a + h. (2)

Here, f(r) and g(r) denote general functions of r. A special case arises

when

f(a) - 1, g(a) - 1,

f(a + h) - A2 + 2p, , g(a + h) - , (3)
A, + 2p1

with the stipulation that f(r) and g~r) with their first derivatives are

continuous in (a, a + h). Since h is assumed to be much smaller than a, it

follows from (3) that f'(a) and g'(a) can be approximated by

f'(a) - (A, + 2A2) - (01 + 2,u,)
h(Al + 2p) El

(4) E

g'(a) - I - Jul

Another special case arises when the interface material possesses 7..

constant properties. Then we have

, iPo
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f(r) - (Al + 2Ml)/(XI + 2 p,), g(r) - l/I'. (5)

Here Al, pu are the Lam6 constants for the interface material.

We also make the assumption that h is much smaller than the wavelength

of the propagating wave. Then, to first order in h/A, A being the

wavelength,

t s i t S irr rr rr' Tre re Ire

t s i (6)

Here rij is the stress tensor and superscripts t, s, and i denote the

transmitted, scattered, and incident field quantities, respectively. Note

that rij, ,]j, and rij appearing above are calculated at r - a. The

spherical polar coordinates r, 0, 9 are defined in Fig. 1. Boundary

conditions (6) express the fact that, to first order in h/A, the traction

components do not suffer any jump across the layer. However, the

displacement components suffer jumps given by

us + U i _ t  hK, t (7)
r r r A, + 2p, rr'

s i t h t

u + uO - ut - t (9)

S0 Here,

KI rf1 dx K f dx (0
I- f(a + hx)' K2 0 g(a + hx)"

Using equations (3) and (4) in (10), we find that K1 and K2 are given

approximately by

-
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A + 2 p, n 1 + A + 2p, - (At 2+ )
A2 + 2A 2 - (A, + 2p,) A, + 2j 1

K2 - Al ln [I + -  ]  (12)
PA2 - JAI

On the other hand, if eq. (5) is used, then

K, - (A, + 2p,)/(Aj + 2pj), K2 - A,/A!. (13)

Mal and Bose [5] studied a problem similar to the one considered here. They

assumed a thin viscous third layer between the sphere and the matrix and

imposed the condition of radial-displacement continuity.

We assumed the incident wave to be either a plane longitudinal wave
propagating in the positive z-direction or a plane shear wave polarized in

the x-direction and propagating in the positive z-direction. Thus,

ui iklze + eik2Ze. (14)
-e -Z -x

Here, k, - w/c, and k2 - W/c2. w denotes the circular frequency of the wave

and c,, c2 denote the longitudinal and shear wave speeds in the matrix. The

factor e-iwt was suppressed.

ul given above can be expanded in spherical vector wave functions as

Suik 1  in(2n+1) L()
- n-- on

+ -1 1 ' I 2n + 1 in LM(1)(6 + n(n +1) 6
2i n- lm- n(n + 1) mn ml m,-l

+ -1- 1(1)(6 - n(n + 1) 6 (15)
k(1l)
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Vector wave functions L M41 and N~1  appearing above are regular at r -

0 and are gi-en by

L-(1n a~ 2- (k1r) Pm (cse + 0i kr) 1L P (case)

+ ne Jn (k1r) Pn (cose)] e

Mm~~i - j (k 2 r) Ptm (cose) - e in (k 2r) 8L P3 (cose)] £30o

1rnr+) n(k 2r) Ptm (cose) + e - (rj k2r))x

a P: (cose) + rin a- (rj (k2r)) P~es)] !iin* (16)

The scattered and transmitted fields can be written

!! f [: A (') 8 + B M()+ C N()(7
- anO rniL~ mn MoI mn -mn mn -mn '(7

!! I L (A' Ll' 6 + B' M() + C' N i .(18

- n-0 rn-i mn Xmn mo mn -En mn-n

Here, the prime denotes that k, and k2 are to be replaced by kj (- W/cj) and

k; (- w/cj), respectively. cl and c; are the wave speeds in the inclusion. .

L - and N are obtained by replacing j nby n~ in (16). Note that

in is the spherical Bessel function of the first kind, and h nis the

spherical Hankel function of the first kind.

The constants A, B, C, A', B', C' are found by using conditions (7) and

(8)-(10). For this purpose, we define the following matrices:

AA
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[2: ::Sj. (20)

Here,

Fn(kia) - nhn(kia) - klahn~lCk~a),

Gn(k2a) - n(n + 1) hn(k2a), Hn(k~a) hnk-)

In(k2a) - (n + 1) hn(k2a) - k2ahn~l(k2a),

SFn(k~a) - Wn - n - % k~a2) hn(k1a) + 2kjahn+l(k 1a),

SGn(k2a) - n(n+l) [(n - 1) hn(k2a) - k2abn+l(k 2a)].

SHn(kja) - (n -1) hn(k1a) - klahn+l(k~a),

SIn(k2a) - (n2 -1 - %kja 2) hn(k2a) + k2ahn~l(k 2a).

Equations to determine Amn and Bmn are found to be

r2h A m
x M+ Ma' L'-lL C

a - x + M' n (21)
liI 202 n {n

t(inn) re(mn)

Here

0 1]2 K'



7

MA, LA are obtained from Mn, Ln, respectively, by replacing hn and hn+1 by

in and in+l, respectively, in (19) and (20), and by replacing k, and k2 by

ki and k;, respectively. In writing (21) we express Ui and 4 given by (15)

as

ui ui  P m (cose)ei a
r n-0 -i r(mn) n

ui + mPm (22)
e n0 ue (n) ae e sine ()(

It then follows that

{.rr(mn) } A - - r(mn).T i I- Lu I' O~- L M (23)

re(mn) n n {:mn)}

Ln and Mn are obtained from Ln and Mn respectively, by replacing hn and hn+1

by Jn and in+4, respectively.

The equation to find Bmn is

[ h ((n- 1) hn(k2 a) - k2ahn+l(k 2a)) -

h(k a) + (n - 1) hn(k2 a) - k2 ahn+l(k 2 a)(

n2in ( n-i) j (k2a) - kajn(k2)] BJn2)

u21 -$ a h22 + (n-i 1,,(k;a)-1 21
e(mn) j - ma) aj l(ka)J rB(mn)

.: (n 1) n~ka ka n+1a j

Here,

2i p (n - 1) Jn(ka) - ka,,+l (kja) 2ire(mn) a Jn(k2a) Ue(mn) (25)

S.-., . . .. .
S - S 

" " ; " " - "-" .
-. .- . ' - ", - -" . . " . " .. " - -. ' ." . . - ' .' . . .'. ' S' .



8

Once Amn, Cmn, and Bmn are determined by solving (21) and (24), the

scattered field is then found from (17). Since the expressions for the

field inside the inclusion will not be needed to derive the dispersion

equation governing the effective wavenumber of plane-wave propagation

through the composite medium, we omit these.

3. Distribution of inclusions

In [5, 14] the scattered-field expressions were used to calculate

effective wave speeds at long wavelengths in a medium with a distribution of

spherical inclusions with interface layers. A 'quasicrystalline'

approximation together with the assumption of no correlation was used to

derive expressions for the effective wave speeds. As has been shown [12],

particular forms of two-particle correlations can be included in the

formalism. But this leads to complicated equations that require numerical

solutions.

In this study, we adopt the approach taken in [10, 11] to calculate

approximate phase velocities and attenuation of plane-longitudinal and

plane-shear waves. In this simple approximation, the effective wavenumber k

is related to the forward scattered amplitude by the equation [15]:

K 2 - k2 + 4*nf(K) (26)

Here, ko is the wavenumber in the absence of scatterers, n the number

* density of scatterers, and f the averaged forward-scattered amplitude.

Equation (26) is an implicit equation for the determination of the (complex)

wavenumber K. A further simplification occurs when the solution to (26) is

taken as

K2 - k + 41nof(ko). (27)

Equation (27) was derived by Foldy [16] and has been used by many authors to

calculate the frequency dependence of phase velocity and attenuation of

plane waves. Equations (26) and (27) are valid for low volume

concentrations of inclusions.
-4.

0i



9

Using (17) in (26), we find that for longitudinal waves the effective

wave number is

4k'i - + t - (-i)n Aon(K1 K2 ). (28)

For shear waves we obtain

+ 4 n (_i)n hn(n+l) (C +

k2  k3 n-i l-1 B I-k-' B 1 (29)

2 in- n(n+l) n- 2 l(

In the following section we present phase velocity and attenuation

% calculated from the above two equations. Note that the real part of K/k

gives the velocity ratio c/C, where c is the velocity in the matrix and C is

the effective velocity in the composite. The attenuation of power is

obtained from the equation

-2 Im K (30)
kk

For dilute concentration this equation reduces to

- no E. (31)

Here, Z denotes scattering cross section.

4. Numerical results and discussion

Computations were made for two particular composite materials: lead-

epoxy and SiC-Al. For both materials, we consider two interface

thicknesses: zero and 0.1a, through which the properties vary linearly from

the inclusion to the matrix.

Numerical results for the lead-epoxy composite based on a simplified

eq. (27) were presented in [10]. Figures 2 and 3 show the attenuation andV n
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phase velocity of a longitudinal wave when the interface thickness equals

zero. These results agree with those given in [10]. Also shown in these

figures are the results for h/a - 0.1. It is seen that this thickness has

little effect. At intermediate frequencies, the interface lowers the phase

velocity and slightly increases the attenuation. Figures 4 and 5 show the
results for the shear wave; the effect is slightly larger at moderate

frequencies. We also computed the phase velocity and attenuation using eq.

(26). Figure 6 shows that eq. (27) overestimates the attenuation. For

phase velocity, however, as shown in Fig. 7, eq. (26) overestimates it at

low frequencies, underestimates it at moderate frequencies, and gives nearly

the same results at high frequencies.

Finally, in Figures 8-11 we show results for the second example:

* SiC-Al. These results are based on eq. (27) and show that the interface

decreases both the attenuation and the phase velocity.
:N1

5. Conclusions

We considered the effect of thin interface layers between the

inclusions and the matrix in modifying the dynamic properties of composite

materials. Dynamic effective properties were calculated by using Foldy's

equations. We found that interface effects are larger in some composites.

We also studied the predictions based on iterative solutions of modified

Foldy's equations in which the scattering amplitudes were calculated

assuming that the matrix had the properties of the composite. This

iterative solution underestimates attenuation in general; at low frequencies

it overestimates phase velocity.
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Table 1.

Properties of constituents

Density (g/cm3) E(GPa) 1A(GPa)

Lead 11.3 23.57 8.35

Epoxy 1.18 4.31 1.57

sic 3.181 440.6 188.1

Al 2.706 71.6 26.7
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